周不器和拉🂞里·佩奇的私交很好,由这俩人携手推进,很快双方的人工智能团队,就在一些具体的方向上展开了业务上的探讨和合作。

    一件大事,一件小事。

    大事是共同成立的一个名为“ai-bio😩🄃”的项目,主要就是🏉生物科学中诸多方面,包括蛋白质结构预测、疾病诊断和治疗、药物发现👳🌼🄜等等。

    用人工智能来结合🂵📋这种级别的大命题🎠💠📓,其实一直都存在,二三十年前就🄙♣🊋有了。

    不过那时候根本就做不到。

    现在不一样了,rokid-g🍶o这款围棋软件所采🃂🔺🅪用🆪的新的“黑箱式”的基于神经网路的机器学习模式,给这样的宏大命题找到了开发的基础。

    作为rokid🎌🏬-go之父,沈向阳在双方的合作交流中,简单地解释了这种“黑箱模式”的逻辑。不仅仅是照顾周不器这样的外行,事实上即便是谷歌的很多技术出身的高管,若是不从事于人工智能领域,也未必就能理解这是什么意思。

    人工智能📽☭类的构想🂵📋,已经有五六十年的历史了,🅠相关产品也出现二三十年了。

    不过,此前的人🎌🏬工智能产品,都是工程师指导并制定出的🃑🗂😶“明规则”。

    就比如当📽☭初打败了国际象棋的着名人工智能产品“深蓝”,背后的技术逻辑其实很简单,就是工程师把围棋的相关规则植入到下棋软件里。

    软件懂了规则,再依靠着计算机的🉂庞大算力,就能打败人类了。

    可是,到了围棋领域,这套思路就不行了。

    围棋要远比国际象棋复杂。

    仅仅靠着算力,以人类目前所掌握的算力能力,根本就不可能算清楚围棋的每📩一种变化,这就需要在算力之外有更深层的东西了。

    在人类选手里,叫思维、叫逻辑。

    想要让计算机也有“罗辑”,这可就太难了,就不🕸🎜👻可能通过人类规则的植入让计算机获得这种层次的计算思维。

    rokid-go采用的是黑箱运作。

    就是把rokid-go这款程序放在一个黑箱里,不对其加入任何的🄙♣🊋规则。📩工程师所做的事,就是给黑箱中的rokid-g🐽🅘o喂数据。

    至于黑箱里发生了什么事,谁也不知道。

    然后,奇迹就诞生了。

    黑箱里的ro🎣💾kid-go,通过大量的人类围棋的棋谱数据,通过自主学习,形成了自身对🟆围棋的理解。

    就会下围棋了。

    至于rokid-go到底是怎么理解围棋的,谁也不知道。只知道rokid-go下出♹🍐来了许许多多人类无法理解的招式,然后就碾压级的轻易的打败了人类。

    也因为🄞⚐这种黑箱模式,让整个人工智能行业出现了🕸🎜👻巨大的争议。